	SHRI SHANKARACH	ARYA INSTITUTE OF PROFESSIONAL MAN	AGEMENT AND	TECHNOLOGY	Y	
		DEPARTMENT OF MECHANICAL ENG	INEERING			
(Class Test – I	Month	Month- November			
	Sem- 7 th	Subject- DESIGN OF TRANSMIS	SION SYSTEM			
	e -D037711(037)	Time Allowed: 2 hrs		Marks: 40		
	- Attempt all question. question.	Parts (a) are compulsory of each question. So	lve any two parts f	from (b), (c) an	d (d) of	
Q. No		Questions	Marks	Levels of Bloom's taxonomy	СО	
		Unit – I				
1.A	What is gear train? A	nalyze and classify gear train.	- 4	Analyze	CO1	
1.B	clockwise direction a train. The number of fixed ring gear Care 2 the pressure angle	in is shown in Figure. The sun gear A rotate and transmits 5 kW of power at 1440 rpm to the f teeth on the sun gear A, the planet gear B a 30, 60 and 150 respectively. The module is 4 m is 20°. Draw a free-body diagram of force that the arm D can deliver to its output shaft.	ne gear and the am and	Applying	CO2	
1.C	teeth based on the L account for dynamic rpm motor. The start The speed reduction plain carbon steel 40	gn a pair of spur gears with 20° full-depth in newis equation. The velocity factor is to be u load. The pinion shaft is connected to a 10 kW ing torque of the motor is 150% of the rated is 4 : 1. The pinion as well as the gear is m C8 (Sut = 600 N/mm2). The factor of safety in the gears, specify their dimensions and s mess for the gears.	used to 7, 1440 torque. hade of can be	Applying	CO1	

		Canadra a service and	kW power through a flexible coupling. The speed of the output shaft
	Sales'	an a sanana	should be approximately 180 rpm. The gears are made of plain carbon
			steel $45C8$ (Sut = 700 N/mm2) and heattreated to a surface hardness of
	Attempt all de	a de la companya de l	340 BHN. The gears are to be machined to the requirement, of Grade 6.
	100129	- second second	The service factor can be taken as 1.5.
COI	Applying	8	(i) Assuming that the dynamic load to be proportional to the
			pitch-line velocity, estimate the required value of the module.
			The factor of safety is 1.5.
			(ii) Select the first preference value of the module and determine
15. ¹			the correct value of factor of safety for bending, using
	na ne n n De s		Buckingham's equation.
	Lasiar a l		(iii) Determine the factor of safety against pitting.
			(iv) Give a list of gear dimensions.

	Unit – II			
2.A	Analyze the relation among axial force, tangential force and radial force of a helical gear.	4	Analyze	CO2
2.B	A pair of parallel helical gears is shown in Figure. A 5 kW power at 720 rpm is supplied to the pinion A through its shaft. The normal module is 5 mm and the normal pressure angle is 20°. The pinion has right-hand teeth, while the gear has left-hand teeth. The helix angle is 30°. The pinion rotates in the clockwise direction when seen from the left side of the page. Determine the components of the tooth force and draw a free-body diagram showing the forces acting on the pinion and the gear. $ \frac{RH}{Z_{B}} = 30 $ $ LH $	8	Applying	CO1

1				
2.C	A pair of parallel helical gears consists of a 20 teeth pinion meshing with a 100 teeth gear. The pinion rotates at 720 rpm. The normal pressure angle is 20° , while the helix angle is 25° . The face width is 40 mm and the normal module is 4 mm. The pinion as well as the gear is made of steel 4OC8 (Sut = 600 N/mm2) and heat treated to a surface hardness of 300 BHN. The service factor and the factor of safety are 1.5 and 2 respectively. Assume that the velocity factor accounts for the dynamic load and calculate the power transmitting capacity of gears.	8	Applying	CO3
2.D	 A pair of parallel helical gears consists of 24 teeth pinion rotating at 5000 rpm and supplying 2.5 kW power to a gear. The speed reduction is 4 : 1. The normal pressure angle andhelix angle are 20° and 23° respectively. Both gears are made of hardened steel (Sut = 750 N/mm2). The service factor and the factor of safety are 1.5 and 2 respectively. The gears are finished to meet the accuracy of Grade 4. (i) In the initial stages of gear design, assume that the velocity factor accounts for the dynamic load and that the face width is ten times the normal module. Assuming the pitch line velocity to be 10 m/s, estimate the normal module. (ii) Select the first preference value of the normal module and calculate the main dimensions of the gears. (iii) Determine the dynamic load using Buckingham's equation and find out the effective load for the above dimensions. What is the correct factor of safety for bending? (iv) Specify surface hardness for the gears, assuming a factor of safety of 2 for wear consideration. 	8	Applying	CO2

J

	SHRI SHANKARA	CHARYA INSTITUTE OF PROFESSIONAL MANAGE		TECHNOLOGY	
		DEPARTMENT OF MECHANICAL ENGINEE			
0	Class Test – I	Session- July – Dec 2023	Mor	nth- October	
	Sem- 7 th	Subject- Machine Tool Technology		•	
	e – D037731(37)	Time Allowed: 2 hrs	Ma	x Marks: 40	а () "Ф _П
Note: -		ired to focus on question and marks columns only. lestion A is compulsory and attempt any two from B, C & 1) .		
Q. No		Questions	Marks	Levels of Bloom's taxonomy	СО
		Unit – I			
1.A	Show the geomet	ry of single point cutting tool by ASA.	4	Remembering	1
1.B	With the help of r cutting.	neat sketch describe the different angles of metal	8	Understanding	1
1.C		nation and how many types of chips are formed ng? Explain them.	8	Understanding	1
1.D	following observa Chip thickness ra Horizontal compo	onent of the cutting force = 1290 N ent of the cutting force = 1650 N ane Angle friction	8	Applying	1

	Unit – II			
2.A	Define the term machinability.	4	Remembering	2
2.B	Discuss the different mechanisms of tool wear with neat and clean sketch.	8	Understanding	2
2.C	What are cutting fluids? Explain the functions and application of cutting fluid.	8	Remembering	2
2.D	Write the short notes on :- i) Crater Wear of tool ii) Flank Wear of tool iii) Tool life	8	Understanding	2

	SHRI SHANKAR	ACHARYA INSTITUTE OF PROFESSIONAL MANAGE	MENT AND	TECHNOLOGY	
		DEPARTMENT OF MECHANICAL ENGINEE	RING		
(Class Test – I	Session- July – Dec 2023	Mo	nth- October	
	Sem- 7 th	Subject- Automation in Manufacturing	e netter - Spittlandet - Pier		
	e - D037713(037)	Time Allowed: 2 hrs	Ma	x Marks: 40	
Note: -		ired to focus on question and marks columns only. uestion A is compulsory and attempt any two from B, C & 1	D.	a i la gapanakan j	
Q. No		Questions	Marks	Levels of Bloom's taxonomy	СО
		Unit – I			
1.A	Define the term A	Automation.	4	Remembering	1
1.B	Explain the basic	elements of automated system.	8	Understanding	1
1.C	What are the diff	erent types of automation? Discuss them briefly.	8	Understanding	1
1.D	What is automate	d material handling? Briefly explain advantages.	8	Understanding	1

and the second		Unit – II		~	
	2.A	Give reasons for implementing CAD.	4	Understanding	2
	2.B	Explain in brief CAD system hardware and software for graphic system.	8	Understanding	2
	2.C	What is database management? What are the features of database management?	8	Understanding	2
	2.D	What is meant by product data management? Why it is important in CAD CAM integration.	8	Understanding	2

1		HARYA INSTITUTE OF PROFESSIONAL MANAGEME	NT AND T	ECHNOLOGY	a 5.
S	SHRI SHANKARAC	DEPARTMENT OF MECHANICAL ENGINEERI			
C	lass Test – I	Session- July – Dec 2023		- October	
Second Part 1	Sem- 7 th	Subject- Technology Management			
Code -	-DOOO706 (076)	Time Allowed: 2 hrs	Max I	Marks: 40	
	1 Gt dante and Dogu	ired to focus on question and marks columns only. estion A is compulsory and attempt any two from B, C & D	•		
Q. No	2. 11 0111 1 0 11, 2	Questions	Marks	Levels of Bloom's taxonomy	со
110		Unit – I			
1.A	Why co-operation be developing nations.	etween government and industry is important in case of Write any 2 points in support of answer	4	Understanding	CO-1
1.B		nce of Technology management in India in present scenario.	8	Understanding	CO-1
) 1.C	Explain in brief con Technology.	8	Understanding	CO-1	
1.D	Discuss the growth	of technology in concern with Indian industries	8	Applying	CO-1

	Unit – II			
2.A	Define Productivity. How it improves standard of living	4	Understanding	CO-2
2.B	Explain the following: i) Role of government in Technology Management ii) Impact of Technology on society	8	Understanding	CO-1
2.C	Being a innovation manager in product based company explain the characteristics of the working environment you will provide at your company to enhance the innovation	8	Applying	CO-2
2.D	Explain the difference between the revolutionary and evolutionary innovations with a suitable example giving the salient time lines	8	Applying	CO-2

			DEPARTMENT OF MECHANICAL ENGINEERING							
(Class Test – I Session- July to December 2023							Month- (October, 2023	
	Sem- 7 th		Subj	ect-RAC	2	2		1. 		N.
D	ubject Code 037712(03	7)	a starter and the	e Allowe				Max	Marks: 40	
Note: - 1. first Question (A) 2. Solve any two from B,C,I				ompulsory	•					
Q. No			Ques	stions				Marks	Levels of Bloom's taxonomy	(
				τ	J nit – I					r
1.A	Define term	s Refrigerat	or and Heat Pum	р				4	R	
1.B	Explain Act	tual Vapor (Compression cy	cle with T	-S Plot.			8	U	
Tas	refrigerant vapor is sup six-cylinder has a clear required; 2. speed of con	is subcooled berheated b single-acting ance of 3% C.O.P.; 3. V mpressor is	⁵ refrigeration o d by 40C before y 5 ⁰ C before lead g compressor wit of the stroke v ⁄olumetric efficie 1000 r.p.m. s of Freon-12may	e entering ving the ev h stroke ev olume, de ency; 4. Bo	the expan /aporator. qual to 1.2 termine:1.	sion valve The mach 5 times th Theoretic	and the ine has a e bore. It al power			
1.C	Sat.temp	Pressure,	Sp.Volume of	Enthalpy	1,	Entropy	,	8	Ap	
	°c	bar	vapor m³/kg	KJ/Kg Liquid	Vapor	KJ/Kg K Liquid	Vapor			
	-28	1.093	0.1475	10.64	175.11	0.0444	0.715	~		
	26	6.697	0.0262	60.67	198.11	0.2271	3 0.686			
							5			1
	Specific hea vapor =0.61		frigerant =0.9631	KJ/Kg K and	l specific he	eat of supe	erheated			
	The refriger minimum t	rator and a emperature	le using R-12 is o mbient tempera difference of 5 sfer. Find 1. Mas	ture are -0 5°C is requ	0°C and 30 uired in th	D°C respense ne evapor	ctively. A ator and			
1.D	required in	kW; 3. C.O.	P.; and 4. Cylind cting compressor	er dimensi	ons assumi	ing L/D =	1.2, for a	8	Ap	

P.T.O.

	Unit – II			
2.A	Explain the Properties of an Ideal Refrigerant.	4	R	3
2.B	Explain the Principle and Working three-fluid absorption system.	8	R	3
2.C	Derive an expression for COP of a Vapor absorption Refrigeration system in terms of Generator Temperature, Condenser temperature and Evaporator temperature.	8	U	3
2.D	In an absorption type refrigerator, the heat is supplied to NH, generator by condensing steam at 2 bar and 90% dry. The temperature in the refrigerator is to be maintained at -5°C. Find the maximum C.O.P. possible. If the refrigeration load is 20 tones and actual C.O.P. is 70% of maximum C.O.P. Find the mass of steam required per hour. Take temperature of atmosphere as 30°C	8	Ap	3

1.54

19/10/23/5-I

.). [.]